Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Given the technical flaws with—and the increasing non-observance of—the TCP-friendliness paradigm, we must rethink how the Inter- net should manage bandwidth allocation. We explore this question from first principles, but remain within the constraints of the In- ternet’s current architecture and commercial arrangements. We propose a new framework, Recursive Congestion Shares (RCS), that provides bandwidth allocations independent of which congestion control algorithms flows use but consistent with the Internet’s eco- nomics. We show that RCS achieves this goal using game-theoretic calculations and simulations as well as network emulation.more » « less
-
null (Ed.)Deep reinforcement learning (RL) has recently been successfully applied to networking contexts including routing, flow scheduling, congestion control, packet classification, cloud resource management, and video streaming. Deep-RL-driven systems automate decision making, and have been shown to outperform state-of-the-art handcrafted systems in important domains. However, the (typical) non-explainability of decisions induced by the deep learning machinery employed by these systems renders reasoning about crucial system properties, including correctness and security, extremely difficult. We show that despite the obscurity of decision making in these contexts, verifying that deep-RL-driven systems adhere to desired, designer-specified behavior, is achievable. To this end, we initiate the study of formal verification of deep RL and present Verily, a system for verifying deep-RL-based systems that leverages recent advances in verification of deep neural networks. We employ Verily to verify recently-introduced deep-RL-driven systems for adaptive video streaming, cloud resource management, and Internet congestion control. Our results expose scenarios in which deep-RL-driven decision making yields undesirable behavior. We discuss guidelines for building deep-RL-driven systems that are both safer and easier to verify.more » « less
-
BGP is a gaping security hole in today's Internet, as evidenced by numerous Internet outages and blackouts, repeated traffic hijacking, and surveillance incidents. Yet, despite Herculean efforts, ubiquitous deployment of the Resource Public Key Infrastructure (RPKI), designed to protect against prefix hijacking attacks, remains distant, due to RPKI's manual and error-prone certification process. We argue that deploying origin authentication at scale requires substituting the standard requirement of certifying legal ownership of IP address blocks with the goal of certifying de facto ownership. We show that settling for de facto ownership is sufficient for protecting against hazardous prefix hijacking and can be accomplished without requiring any changes to today's routing infrastructure. We present APKI, a readily deployable system that automatically certifies de facto ownership and generates the appropriate BGP-path-filtering rules at routers. We evaluate APKI's security and deployability via live experiments on the Internet using a prototype implementation of APKI and through simulations on empirically-derived datasets. To facilitate the reproducibility of our results, we open source our prototype, simulator, and measurement analysis code.more » « less
-
null (Ed.)There is now a significant and growing functional gap between the public Internet, whose basic architecture has remained unchanged for several decades, and a new generation of more sophisticated private networks. To address this increasing divergence of functionality and overcome the Internet's architectural stagnation, we argue for the creation of an Extensible Internet (EI) that supports in-network services that go beyond best-effort packet delivery. To gain experience with this approach, we hope to soon deploy both an experimental version (for researchers) and a prototype version (for early adopters) of EI. In the longer term, making the Internet extensible will require a community to initiate and oversee the effort; this paper is the first step in creating such a community.more » « less
An official website of the United States government
